Syllabus – GMS 6234

Course Title: Introduction to phylodynamics: a practical approach to molecular phylogenetics of pathogens

Instructor: Marco Salemi, Ph.D.
Emerging Pathogens Institute, Room 272 (2nd Floor)
2055 Mowry Road
Gainesville, FL 32610-3633, U.S.A.
Tel +1 352 273 9567, Email: salemi@pathology.ufl.edu

Teacher’s Assistant: David J. Nolan (djnolan@ufl.edu)

Office Hours: Every Wednesday 10:00am-12:30pm

Course registration: Please contact Emilee Rice: ricee@ufl.edu

Course Objectives and class meeting times
Teaching objectives: by the end of the course the students will have a solid understanding of the basic principles of molecular evolution, tree-building algorithms (distance, maximum likelihood and Bayesian based methods), molecular clocks theory, and coalescence theory. They will also be able to analyze real molecular sequence data (using HIV and V. cholerae data sets) to infer maximum likelihood (IQ-TREE) and Bayesian trees (BEAST), calibrate a molecular clock and use coalescence models to investigate the demographic history of microbial epidemics and the relationship between intra-host viral evolution and pathogenesis (BEAST). Class meeting times: course starts January 26th 2016 and ends March 29th 2016 (9 weeks); class meets every Tuesday and Thursday 10:00 am - 12:30 pm. Final exam, March 31st 2016.

Amount of credit: 3

Course Outline

Week 1: Principles of molecular evolution.

- An overview of the evolutionary theory at the molecular level
- Examples of phylodynamic analysis applied to the study of microbial pathogens (HIV, HCV and MRSA)

Week 2: Evolutionary distance and Phylogenetic Inference using distance methods

- An introduction to Markov models
- Distance methods in phylogenetic-tree reconstruction

Week 3: Phylogenetic Inference using maximum parsimony and maximum likelihood methods

- Occam’s razor and phylogenetic inference
- Maximum Likelihood function and calculating the likelihood of a tree

Week 4: Phylogenetic Inference using Bayesian methods

- Bayes Theorem, Markov Chain Monte Carlo (MCMC) methods and their applications to molecular phylogenetics
- Introduction to IQ-TREE and MrBayes (practical computer section)
Weeks 5: Molecular clocks and Basic coalescence

- Strict and relaxed molecular clocks
- Kingman’s coalescence

Weeks 6: Testing evolutionary hypothesis

- Phylodynamic hypothesis testing
- Introduction to MEGA5 and BEAST (practical computer section)

Week 7: Special topics: recombination and phylogeography

- The impact of recombination and phylogenetic noise in phylogenetic inference: Trees versus Networks
- Introduction to phylogeography

Week 8: Phylodynamics and Phylogeography I

- Phylogeography with BEAST (practical computer section)
- Discussing phylodynamic papers I (journal club)

Week 9: Phylodynamics and Phylogeography II

- Discussing phylodynamic papers II (journal club)
- Final exam
Students’ evaluation
Evaluation will include the following: participation in discussions during classes, 10% (10 points); journal club presentation, 30% (30 points); final written exam, 60% (60 points). Point cut-offs for letter grades:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90-100</td>
<td>A–</td>
</tr>
<tr>
<td>A–</td>
<td>90-94</td>
<td>B+</td>
</tr>
<tr>
<td>B+</td>
<td>87-89</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>83-86</td>
<td>B–</td>
</tr>
<tr>
<td>B–</td>
<td>80-82</td>
<td>C+</td>
</tr>
<tr>
<td>C+</td>
<td>77-79</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>73-76</td>
<td>C–</td>
</tr>
<tr>
<td>C–</td>
<td>70-72</td>
<td>D+</td>
</tr>
<tr>
<td>D+</td>
<td>67-69</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>63-66</td>
<td>D–</td>
</tr>
<tr>
<td>D–</td>
<td>60-62</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td><60</td>
<td></td>
</tr>
</tbody>
</table>

Information on current UF grading policies for assigning grade points can be found at the following web site: http://www.registrar.ufl.edu/catalog/policies/regulationgrades.html.

Course material and Recommended textbooks
University of Florida SAKAI e-learning suite: syllabus, lesson plans, lecture slides, assigned papers, and homework for Introduction to Phylogenetics will all be accessible online. The exact address will be provided to the students by email prior to class starting.

Required textbook:

Suggested (but not mandatory) readings:

Class attendance and make-up exams policy
Attendance to all lessons is expected. Excused absences follow the criteria of the UF Graduate Catalogue (e.g., illness, serious family emergency, military obligations, religious holidays), and should be communicated to the instructor prior to the missed class day when possible. Regardless of attendance, students are responsible for all material presented in class and meeting the scheduled due dates for class assignments. Personal issues with respect to class attendance or fulfillment of course requirements will be handled on an individual basis.

Accommodations for Students with Disabilities
Students requesting classroom accommodation must first register with the Dean of Students Office. The Dean of Students Office will provide documentation to the student who must then provide this documentation to the Instructor when requesting accommodation.